服务热线:0574-88003157
电子邮箱:ngebang@163.com
当前所在位置 >主页 > 资料中心 > 磁学科普 >

生物界的磁现象

磁场对生物的影响,即磁场的生物交应引起人们的注意还为期不久。据测验,人在2000奥斯特的磁场中停留15分钟,对身体还不至于造成危害,如突然靠近加速器磁场时,会立刻失去辨别方向的能力,稍等片刻后,方能适应。当人们突然离开加速器时,又将产生刚进入磁场时的同样反应。强磁场对某些生物的作用更加显著。如果将果蝇蛹放在22000奥斯特/12毫米和9000奥斯特/1毫米的非均磁场中,几分钟后果蝇便会死去。约经过10分钟磁处理的果蝇,有50%不能变为成虫,成为成虫的那一部分也活不到一小时,并且有5~10%的成虫呈现出翅和体形畸变。


 
磁场对生命的活动会产生哪些影响呢?我们不妨先做一个试验。在一个潮湿的(温度在18~25℃)玻璃暗室内,安置一个特定的架子,上边放有过滤纸,过滤纸的两端分别与放有水的容器相连,以便使过滤纸团能均匀地吸取水分。过滤纸的上面、放有两类干燥的、没有发过芽的玉米种子,一类玉米种子的胚根朝着地球的北磁极。这样经过一些时间,玉米的种子就能慢慢地开始发芽。有趣的是,胚根朝向地球南磁极的那类玉米种子,要比胚根朝向地球北磁极的那类玉米种子早几昼夜发芽,并且还发现前者的根和茎,生长都比较粗壮,而后者的种子所发的芽,常常会产生弯向南磁极的形态。
 
为了探索其中的奥妙,有人还精心设计了一种试验设备。让种子处在强度高达4000高斯的永久磁铁中、结果有趣地发现种子的幼根仿佛在避开磁场的影响,而偏向磁场较弱的一边。


这是什么原因呢?科学工作者经过了几年的研究发现,原来植物的有机体,是具有一定的磁场和极性的,并且有机体的磁场是不能对称的。一般说来,负极往往比正极强,所以植物的种子在黑暗中发芽时,不管种子的胚芽朝哪一个方向,而新芽根部是朝向南方的。
 
经过研究,科学工作者还发现弱磁场不但能促进细胞的分裂,而且也能促进细胞的生长,所以受恒定弱磁场刺激的植物,要比未受弱磁场刺激的根部扎得深一些,而强磁场却与此相反,它能起到阻碍植物深扎根的作用。
 
但任何事物并不是绝对的,有关的试验表明,当种子处在磁场中不同的位置时,如果磁场能加强它的负极,则种子的发芽就比较迅速和粗壮;相反,如果磁场能加强它的正极,则种子的发育不仅变得迟缓,而且容易患病死亡。科学工作者曾经在堪察加半岛进行这样的实验,在种植落叶松的时候,不是按通常那样彼此之间是相互平行的,而是径向种植的,各行的树朝南、东西和西南方向排列,结果有趣地发现,生长最好的是以扇形磁场东部取向的那些树苗。根据这个科研成果,在栽种落叶松时,人们采用了一种粘性纸带,在纸带上放置已按预定方向取向的种子来进行播种。
 


磁场对动物的生命活动,也有一定的影响。人们曾经用鱼类、老鼠、白蚁、蜗牛、果蝇和蚯蚓等动物做实验,结果发现鼠类在很强的均匀磁场中,生长缓慢而且短命;在不均匀的磁场内,其死亡率会增加;在高达3000~4000高斯的稳定磁场下,能使它性欲周期消失;在经过永久磁铁磁场作用的老鼠,对于通常情况可以致死的辐射剂量,具有较强的抵抗能力。

人们很早就发现白蚁常常按照磁场的方向来休息。有人曾经故意把它按东西方向横放着,然后拿到磁场非常强的人造磁场中,发现它仍会按照新的磁场方向挪动身体的位置。
 
蜗牛的运动也是一样。当外界磁场强度在0.l~0.2高斯左右时,它辨别方向的能力最为灵敏;当外界磁场强度增大时,分辨方向的能力就会很快消失。一般的蠕虫,当外界磁场超过10高斯时,其辨别方向的能力也会消失。
 
地球诞生以来,地球磁场不但改变方向,而且经常倒转。螃蟹是一种对磁场十分敏感的动物,面对着磁场不断变化的情况,它不得不采取一种折衷的办法,以不变应万变,既不向前走也不向后走,而是横着走。地球的倒转对这种老资格的动物来说,就没有什么影响了。
 
生物磁场的来源
生物磁场的来源主要有:
(1)由自然生物电流产生的磁场。人体中小到细胞、大到器官和系统,总是伴随着生物电流。运动的电荷便产生了磁场。从这个意义上来说,凡是有生物电活动的地方,就必定会同时产生生物磁场,如心磁场、脑磁场、肌磁场等均属于这一类。
(2)由生物材料产生的感应场。组成生物体组织的材料具有一定磁性,它们在地磁场及其它外磁场的作用下便产生了感应场。肝、脾等所呈现出来的磁场就属于这一类。
(3)由侵入人体的强磁性物质产生的剩余磁场。在含有铁磁性物质粉尘下作业的工人,呼吸道和肺部、食道和肠胃系统往往被污染。这些侵入体内的粉尘在外界磁场作用下被磁化,从而产生剩余磁场。肺磁场、腹部磁场均属于这一类。

生物磁场一般都是很微弱的,其中最强的肺磁场其强度也只有 10~1010特斯拉数量级;心磁场弱一些,其强度约为10特斯拉数量级;自发脑磁场更弱,约为10特斯拉数量级;最弱的是诱发脑磁场和视网膜磁场,其为10特斯拉数量级。周围环境磁干扰和噪声比这些要大得多,如地磁场强度约为0.5×10特斯拉数量级左右;现代城市交流磁噪声高达 10~10特斯拉数量级。若距离像机床、电磁设备、电网或活动车辆较近,则磁噪声会更强。


 
生物磁场及其医学应用
(1)心磁场:
心脏的心房和心室肌肉的周期性收缩和舒张伴随着复杂的交变生物电流,由此而产生了心磁场。上面提到1963年首次测得人体心磁场,其强度为10-10特斯拉。其随时间的变化曲线称为心磁图(MCG)。心磁图与心电图在时间变量与波峰值上有相似之处。测量心磁图时需要将磁探头放在心脏位置的胸前,随着位置的变化记录所得MCG各成分亦有所不同。
心磁图与心电图相比有一些明显的优点。首先,测心磁图时不必使用电极就可测得生物组织的内源性电流,这是在身体表面直接安放电极所不能的;其次,在心磁图上可呈现出心电图尚不能鉴别的异常变化;再者测心磁图时不必与皮肤接触,也不用参考电极,不会出现由此而产生的误差。
 
(2)脑磁场:
脑细胞群体自发或诱发的活动,产生复杂的生物电流,由此产生的磁场叫脑磁场。1968年科恩首先测得a节律脑磁场随时间的变化曲线,称为脑磁图(MEG)。
脑磁图比脑电图有许多明显的优点。首先脑磁图既不需要参考点也不需要与皮肤接触,不会出现由此引起的误差。由于头盖骨有很高的阻抗,常使脑电图模糊不清,但脑磁图是穿透的;另外脑磁图能直接反映脑内场源的活动状态,特别能显示出脑深层场源的活动状态,对脑磁图求逆更能准确确定场源的强度和位置。
 
(3)肺磁场:
心磁场和脑磁场属于内源性磁场,而肺磁场则属于外部含有铁磁性物质的粉尘侵入人体肺部在磁化后所产生的剩余场。
测量肺磁场时,首先应清除人身上的铁磁性物质,如手表、钮扣等。再将受试者胸部置于数十毫特斯拉磁场中进行磁化,然后立即到磁强计探头处进行测试。
肺磁场是1973年美国麻省理工学院的科恩首先探测出来的。70年代后期至今,日本、加拿大、芬兰和我国都开展了一系列研究工作。肺磁场的研究之所以受到人们的重视,一个直接的原因是在医学上的重要应用。众所周知,职业性尘肺痛诊断的唯一有效手段是X身线法。但此法属于影响像学,一般来说只有粉尘与肺组织形成生化反应而导致病变的才能检查出来。肺磁法则属于含量学,只要肺部积存一定量的粉尘,不管侵入的时间长短都能被检测出来,这就意味着对那些虽积存一定粉尘但尚未构成病理改变的早期病人也能检查出来,从而进行早期预防,这对防止某些职业性尘肺病的发生有着重要。



© 2014 N个帮 版权所有 网络经营许可证 浙ICP备16030367号 浙公网安备 33020402000255号